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We examine numerically the behaviour of the solutions of the axisymmetric 
Boussinesq equations in a tall, differentially heated, air-filled annulus. The numerical 
algorithm integrates the time-dependent equations in primitive variables and 
combines a pseudospectral Chebyshev spatial expansion with a second-order time- 
stepping scheme. The instability of the conduction regime is found to be unsteady 
cross-rolls. By assuming Hopf bifurcation, we can accurately determine the critical 
Rayleigh number. As the Rayleigh number increases, the solution is monoperiodic at 
first. Then i t  undergoes a period-doubling bifurcation. When the Rayleigh number is 
further increased, the solution reverts to  a monocellular steady state through 
subcritical bifurcations with hysteresis. At even higher Rayleigh number, boundary- 
layer instability sets in, in the form of travelling waves. This instability has the 
characteristics of a supercritical Hopf bifurcation. We examine the space-time 
structure of the two types of unsteady solutions. We have presented the basic periods 
of the steady oscillations as functions of the Rayleigh number in the vicinity of the 
Hopf bifurcation points, and have also computed the Nusselt numbers for the 
various flow regimes. 

1. Introduction 
We consider an air-filled tall vertical annulus in a gravitational field. The inner and 

outer walls are kept at two different constant temperatures and the top and bottom 
walls are thermally insulated. Natural convection in cylindrical cavities has not 
been studied in as much detail as in Cartesian geometry, yet i t  has many applications 
in thermal engineering and in the insulation of nuclear reactors. It also presents 
important examples of bifurcation in fluid dynamics. In  Cartesian coordinates the 
two-dimensional Boussinesq equations depend on three dimensionless parameters : 
the Rayleigh number Ra, the Prandtl number Pr and the aspect ratio A ,  defined as the 
ratio of the height of the cavity to its width. The annulus configuration requires an 
additional fourth dimensionless parameter, the radius ratio 7, defined as the ratio of 
the inner radius to  the outer radius of the annulus (0 < 7 < 1). In  a tall annulus, for 
small Rayleigh numbers, the flow and the isotherms are parallel to the vertical walls, 
except in the vicinity of the top and bottom ends. These features are accurately 
represented by the one-dimensional analytical solution found in an annulus of 
infinite length. The linear stability analysis of the latter solution was undertaken by 
Choi & Korpela (1980). The principal finding is that, for fluids of moderate Prandtl 
number, the conduction regime becomes unstable to unsteady perturbations in the 
form of cross-rolls, the so called ‘eat’s eye’ instability. These perturbations 
propagate upwards when the inner cylinder is warmer than the outer one and reach 
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their maximum amplitude in the middle of the slot. This differs significantly from the 
corresponding instability in Cartesian geometry which takes the form of stationary 
disturbances, as a consequence of the skew-symmetry of the base flow and 
temperature profiles. This can only be true for an ideal Boussinesq fluid. Lauriat & 
Desrayaud (1985 a )  have shown that taking radiative effects into account in a 
Cartesian geometry breaks the skew-symmetry of the profiles and results in unsteady 
perturbations. The choice of basis functions made by Choi & Korpela did not allow 
them to cover the whole range of Prandtl numbers and radius ratios. More recently, 
by using Bessel functions, Shaaban & Osizik ( 1982) have obtained complementary 
results. However, there is still a range of Prandtl numbers and radius ratios for which 
reliable results are lacking: this is probably due to a fundamental change in the 
nature of the instability when varying the radius ratio. 

These linear stability analyses assumed axisymmetric perturbations. The validity 
of this assumption was recently addressed by McFadden et al. (1984) who investigated 
the stability of the Conduction regime for both axisymmetric disturbances and 
disturbances of wavenumber one in the azimuthal direction. They have shown that 
the latter mode is more unstable than the former when the radius ratio is less than 
0.44 for a Prandtl number of 0.71. This agrees with the experimental results obtained 
by Choi & Korpela (1980) who report on the existence of axisymmetric disturbances 
in a cavity of radius ratio equal to 0.68. Azimuthal structures were found in the  
experiments of Weidman & Mehrdadtehranfar (1985) who studied a fluid of 
moderately large Prandtl number in a very tall annulus. 

Few full Navierdtokes computations have been performed in the vertical annulus 
configuration. De Vahl Davis & Thomas (1969) and Thomas & de Vahl Davis (1970) 
were the first to investigate the vertical differentially heated annulus. These 
pioneering computations were done in annuli of aspect ratio between 5 and 15, 
limited to relatively low Rayleigh-number values, given the available computer 
resources of the time. More recently, Lee, Korpela & Horne (1982) investigated the 
instability of the conduction regime in tall annuli of aspect ratio ranging from 10 to 
20 for various Prandtl-number fluids. Their numerical scheme is of finite-difference 
type and integrates the unsteady Boussinesq equations in stream function-vorticity 
formulation. Unsteady solutions are found for Rayleigh-number values that are in 
good agreement with the linear stability results. Lee & Korpela (1983) have 
conducted more extensive calculations in tall Cartesian cavities. They have tried to 
reach the unsteady regime resulting from the instability of the boundary layers for 
a fluid corresponding to water. At a high Rayleigh number, their results show 
travelling waves propagating in the boundary layers but they do not seem to have 
integrated long enough in time to reach the asymptotic unsteady solution. There has 
recently been a revival of interest in the vertical annulus configuration: see, for 
example, the experimental results by Prasad & Kulacki (1985) and the numerical 
computations by Lin & Nansteel (1987) for water near the density maximum. 

The aim of this work is to study the sequence of events that take place in a tall air- 
filled annulus as the Rayleigh number is progressively increased from zero to the 
bifurcation corresponding to the onset of travelling waves. Most of the computations 
are performed in a cavity of aspect ratio equal to 16 and for a radius ratio equal to 
0.8. In  the next section, we recall the governing equations and describe the numerical 
algorithm used to integrate the time-dependent equations. In $3  we consider base 
flow solutions belonging to the conduction regime ; we deal with the boundary-layer 
regime in $4. In  the last section we present local and global Nusselt numbers for the 
various flow regimes. 
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2. Governing equations and numerical scheme 
2 .1 .  Governing equations 

Consider the flow of a Newtonian fluid of volumetric expansion coefficient p in a 
closed annulus of height 2H extending from - H to H in the z-direction and from R, 
to R,  in the r-direction. The positive z-direction of the cylindrical coordinate system 
is chosen opposite to the gravity vector of modulus g .  The inner and outer cylinders 
are maintained at  different uniform temperatures TI and T, (generally AT = 

> 0) while the top and bottom walls are thermally insulating. We assume that 
the fluid satisfies the Boussinesq approximation and we consider sufficiently large 
values of the radius ratio so that, following the results obtained by McFadden et al. 
(1984), the flow is likely to be axisymmetric. 

- 

We introduce 

as reference quantities for length, velocity and time. Defining the dimensionless 
temperature as 0 = ( T -  Tr)/(Ti- Ti) with 5'; = $(TI + E ) ,  the governing equations 
can then be cast in the following non-dimensional forms : 

au u aw -+-+- = 0, 
ar r az 

where t is the time, u and w are the velocity components in the r-(horizontal) and 
z-directions respectively and P the deviation from the hydrostatic pressure divided 
by the mean density multiplied by veP. I n  these equations, V2 is the cylindrical 
Laplacian operator 

Gr, is the Grashof number based on H ( = gpH3AT/v2) and Pr ( = v / K )  is the Prandtl 
number, where v and K are respectively the kinematic and thermal diffusivities of the 
fluid. The Rayleigh number Ra, is equal to PrGr,. In  all the numerical 
computations, Pr will be set to 0.71. 

I n  dimensionless coordinates the computational domain extends from rl = R l / H  
to r2 = R2/H in the r-direction and from - 1 to + 1 in the z-direction. The aspect ratio 
A is thus equal to 2/ (r , - r l ) .  The dynamic boundary conditions are the no-slip 
condition on all four walls of the cavity. The scaled temperature is respectively 0.5 
and -0.5 on r l  and r, if the inner wall is heated. On the horizontal walls z = - 1 and 
+ 1 ,  the adiabaticity boundary condition reads a@/az = 0. 
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2.2. Numerical algorithm 
The numerical algorithm integrates the time-dependent equations ( 1)-(4) in primitive 
variables. It is an extension of the algorithm developed by Le Qu&& & Alziary de 
Roquefort (1982, 1985a) in a Cartesian geometry. 

The space discretization relies on spectral spatial expansions of the dependent 
variables in double truncated series of Chebyshev polynomials : any two-dimensional 
field f ( r ,  z,  t )  (where f stands for either u, w, P or 0) is thus expanded as 

where cis defined as (2r-  ( r l  +r2))/(r2-rl). The spectral coefficientsf,, are obtained 
by collocation a t  the Gauss-Lobatto Chebyshev points using the orthogonality 
relationships for the discrete cosine series : 

with Ci = cos (ix/N),  i = 0 ,  ..., N ;  z j  = cos ( j x / M ) ,  j = 0, ..., M ;  Co = zN = 2 ,  Cn = 
1,0 < n < N .  The time-stepping scheme is of finite-difference type. For stability 
considerations (Gottlieb & Orszag 1977), it is compulsory to resort to an implicit or 
semi-implicit treatment of the diffusive or viscous terms, while the nonlinear terms 
arc generally treated explicitly. A second-order scheme which is generally used is the 
classical Adams-BashforthICrank-Nicolson scheme. More recently Vanel, Peyret & 
Bontoux (1986) have proposed another second-order scheme which combines a 
second-order backward Euler scheme with an  Adams-Bashforth extrapolation of the 
nonlinear terms. These scheme possesses better stability properties when used in 
conjunction with the influence matrix technique to maintain the incompressibility 
condition. This property was demonstrated by Ehrenstein (1986) when the equations 
are formulated in stream-function and vorticity variables. Numerical experiments 
indicate that this property seems to carry over to the primitive variable formulation. 
When applied to a scalar advection-diffusion equation such as 

;f+ V*Vf = vy, 
at 

the scheme proposed by Vanel et al. (1986) reads 

where At is the time step. This equation can be cast in an Helmholtz equation for thc 
unknown field f a t  time n+ 1 :  

V2jn+l- As"" = - s,, (8) 
where h = 3/2At. The source term Sf of this equation comprises all the known 
quantities at previous time levels nAt and (n- 1) At. I n  particular the nonlinear terms 
are classically evaluated pseudospectrally. The Helmholtz equation is then solved in 
the spectral space using the tau-method and an algorithm derived from the partial 
diagonalization algorithm proposed by Haidvogel & Zang (1979) for the Cartesian 
case. This algorithm relies on the expansion of the solution on a modified basis 
function which is the tensor product of the Chebyshev polynomials in one direction 
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with the eigenfunctions of the operator corresponding to the other direction. Since 
the symmetric role of the two space Cartesian variables is broken in cylindrical 
coordinates, one has to make a choice concerning the direction of the eigenfunction 
expansion. Examination of the asymptotic operation count shows that it is 
preferable to diagonalize the operator corresponding to the radial direction since this 
allows retention of the quasi-tridiagonal form of the a2/az2 operator. Two sets of 
eigenvalues and eigenfunctions corresponding respectively to 

(E+'2), (?+---- 
ar2 rar ar2 rar l a  r2 l )  

have then to be computed in order to account for the different forms of the diffusion 
operators for the u-velocity component and for the other variables. All the 
eigenvalues and eigenfunctions computed for various values of the radius ratio and 
for values ofNup to 32 were found to be real. (This property lacks theoretical proof.) 
Finally all the terms specific to the cylindrical coordinates such as multiplication by 
r or 1/r were computed spectrally. For instance, evaluation of the spectral 
coefficients of f / r  given the spectral coefficients o f f  requires the inversion of a 
tridiagonal matrix system. 

The incompressibility constraint is maintained through the use of the influence 
matrix technique which was introduced by Kleiser & Schumann (1980) for the one- 
dimensional Chebyshev case. We refer to Le Qu6r8 & Alziary de Roquefort (1985a) 
for the details of the algorithm in the two-dimensional Chebyshev case. The efficiency 
of the influence matrix algorithm lies in the fact that a t  each time step, a velocity 
field that possesses a zero-divergence at the boundary of the computational domain 
is obtained in only one iteration. This velocity field is not, however, exactly 
divergence-free within the computational domain owing to the non-commutativity 
of the tau-projection with the partial differentiation operators (see Haldenwang 
1984). Care was taken to choose sufficiently high resolution to maintain the Euclidian 
norm of the divergence of the velocity field a t  less than 5 x throughout the 
computations. 

For the purpose of easier comparison with earlier work, some of the result will be 
presented in different dimensionless units than those used to perform the actual 
integration. I n  particular the discussion of the results below is made in terms of the 
Rayleigh number, Ra, based on the cavity width ( r 2 - r l )  as reference length (Ra = 
8Ra,/A3). For the sake of clarity all the drawings are presented in a cavity of aspect 
ratio equal to 12. 

3. The conduction regime 
3.1. The steady conduction regime 

When the equations are integrated for low values of the Rayleigh number (typically 
less than 6 x lo3), the numerical solutions evolve rapidly towards a steady state. For 
instance, when the equations are integrated with a Rayleigh-number value set to 
4 x lo3 starting from rest, the solution reaches a steady state at non-dimensional time 
equal to 10. The corresponding flow is the well-known conduction regime with 
isotherms parallel to the isothermal vertical boundaries and a parallel flow extending 
over more than 90% of the cavity height. 
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FIGURE 1. Time evolution of the temperature at point f = 0, z = 0.26 ; (a) Ra = 8 x lo3, 
( b )  Ra = 7~ lo3; A = 16, 7 = 0.8; N =  24, M = 72. 

3.2. Unsteady motion 

3.2.1. Structure of unsteady motion 
When the equations are integrated from rest with a value of the Rayleigh number 

set to 8 x lo3, the numerical algorithm gives an asymptotic solution which is 
unsteady, periodic in time and shows fluctuations of constant amplitude, as shown 
in figure 1 (a ) .  If integration is carried out with a smaller Ra value of 7 x lo3 starting 
from the same initial condition (i.e. rest), one also obtains an asymptotic solution 
which is periodic in time and shows fluctuations of constant, albeit smaller, 
amplitude (figure l b ) .  The major difference with the previous case is that it takes 
much longer for the solution to reach its asymptotic state. The phase of exponential 
growth of the fluctuations is clearly visible on the figure. It is followed by a phase 
where nonlinear interactions take over and eventually saturate the amplitude of the 
fluctuations, leading to the asymptotic state of constant-amplitude fluctuations. 
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These time integrations were performed with a spatial resolution (N = 24, M = 72) 
and with a time step equal to 0.03. In  order to check the accuracy of these solutions, the 
integration corresponding to an Ra value of 7 x lo3 was repeated with an increased 
spatial resolution (N = 32, M = 96) and a smaller time step of 0.025. This allowed us 
to have a Chebyshev collocation point a t  the same physical location as the sampling 
point chosen for the coarser resolution. The time traces of the temperature at the 
sampling points virtually cannot be distinguished (differences less than 1 x 
which proves the adequacy of the coarser (N = 24, M = 72) resolution. 

Once the asymptotic periodic solution is reached, it is possible to determine its mean 
time value from simple arithmetic averaging of the fields sampled over one or several 
periods of oscillations. Figure 2 presents time sequences of the fluctuating 
temperature and stream-function fields over one period of oscillation. These plots 
show that the fluctuations reach their maximum amplitude in the centre of the 
cavity just above mid-height. These fluctuations originate in the bottom part of the 
cavity. As they slowly drift upwards they grow in amplitude till mid-height of the 
cavity. Afterwards their amplitude slowly decreases and by the time they reach the 
uppermost part of the cavity, their amplitude has become almost zero. These 
structures should be compared to the eigenfunctions calculated by Hart (1971) for 
the linear instability of the flow in a differentially heated Cartesian slot in the 
conduction regime. One also sees that these structures are characterized by a 
wavelength that remains approximately constant as they proceed upwards and they 
consequently travel a t  a constant wave speed. Graphical evaluation of the 
wavelength a t  the location of maximum amplitude (just above mid-height of the 
cavity) yields 2.07(r2-rI) + 2  YO which corresponds to a wavenumber of 3.03. The 
period 17 of the oscillations is 12.3 in units of ( H / s / ~ A T ) O . ~  which indicates that 
roughly 400 time steps are needed to integrate the equations over one time period. 
In  the units used by Choi & Korpela this corresponds to  a wave speed equal to 
6.0 x lop4. The critical wavelength and wave speed found by Choi & Korpela in the 
infinitely long annulus for the same value of the radius ratio and of the Prandtl 
number are respectively 2.24(r2-r1) and 7.0 x 

3.2.2. Accurate determination of the critical parameters 
Brute-force integration of the time-dependent equations can only provide upper 

and lower bounds of the critical Rayleigh number value. In  order to obtain a more 
accurate determination of this critical value one has to  assume the nature of the 
bifurcation that corresponds to  the onset of unsteadiness. A reasonable assumption 
in view of the very small amplitude of the oscillations obtained for the value of Ra 
set to 7 x lo3 is that loss of stability is due to the presence of a supercritical Hopf 
bifurcation in the continuous equations. 

Three main consequences derive from this assumption (see e.g. Iooss 1972) : the 
period of the oscillations tends continuously to the period of the oscillations at  the 
Hopf bifurcation point; the correlation time, i.e. the time needed to reach the 
asymptotic solution, diverges as (Ra-Ra,)-l; the amplitude of the limit cycle 
behaves like ( R U - R ~ , ) ~ . ~  in an interval around Rai. The latter feature can be used 
to  determine the accurate location of the critical value. This requires the computation 
of several asymptotic solutions. One then has to determine a range of values of the 
Rayleigh number over which the squared amplitude of the oscillations behaves 
linearly with Ra. Extrapolation of  this relationship to zero amplitude then gives an 
accurate determination of the critical value. We have chosen to look a t  the 
fluctuations of local and global quantities. The local quantities are the temperature 
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FIGURE 2 .  Time sequence of fluctuating temperature field (a) and of fluctuating stream function 
field (b),  Ra = 7 x lo3; A = 16, = 0.8; N = 24, M = 72. Time interval is 4.1 1 .  Temperature 
isovalues are 0, k0.002, f0.01, k0.02. Stream-function isovalues are 0, +0.00004, f0.0001, 
+0.0002. [maximum stream function is 0.0063). Negative isovalues are shown as dotted lines. One 
structure is shaded in grey so that  its motion can be followed. 

and w-velocity component at, the monitoring point ; a global quantity E(O) is defined 
as 

where the 0,, are the spectral coefficients of the temperature field. Figure 3 shows 
the squared amplitudes of the fluctuations of these three quantities for four values 
of the Rayleigh number, 6900, 6950, 7000 and 7100. It can be seen that the squared 
amplitudes grow linearly with Ra in this range of Ra-values. Extrapolation of the 
relationships to zero provides an estimate of the accurate value, which turns out to 
be 6850+ 10. The critical value found by Choi & Korpela in the annulus of infinite 
aspect ratio is 5770. In order to see if this difference between the two critical values 
was due to inaccuracy of our results or to finite-aspect ratio effects, we carried out 
determination of the critical value for annuli of aspect ratio equal to 20 and 25. The 
critical values found using the same methodology are respectively 6185 and 5965, 
showing that finite-aspect-ratio effects have a significant stabilizing influence on the 
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Ra 

FIGURE 3. Evolution of the squared amplitudes of temperature a"@), of the w-velocity component 
a2(w) and of a2(E) as a function of Ra; A = 16, 7 = 0.8. Location of monitoring point: Q = 0, 
z = 0.26. 

critical value corresponding to the transition to unsteady flow. The origin of this 
stabilizing effect is probably due to the vertical stratification which is known to delay 
the onset of transition (Bergholz 1978). The vertical stratification appears near the 
end regions and its relative penetration length increases with decreasing aspect ratio. 
The computations for A = 20 were carried out with N = 24, M = 90 and At = 0.025, 
and those for A = 25 with N = 24, M = 96 and At = 0.03. 

3.2.3. Evolution of the period of the oscillations 
The first consequence of the assumption of Hopf s bifurcation listed in the previous 

paragraph states that one can find a relationship between the dimensionless periods 
l7 of the oscillations and the Rayleigh number in the vicinity of the Hopf bifurcation 
point. For the three aspect ratios considered and corresponding Ra values, these 
periods were carefully determined by noting the indices n where the product 
( O ( n )  - @(n- 1)) (O(n- 1) - O(n- 2)) at the monitoring point is negative during the 
course of integration. This measurement is independent of the location of the 
sampling point since all quantities at  the interior points oscillate at the same 
frequency, modulo a phase lag. Table 1 shows for instance, the actual periods of the 
oscillations for the A = 16 case measured for four Rayleigh number values and also 
for R a  equal to 6850 for which we could not conclude on the nature of the asymptotic 
solution but could nonetheless accurately measure the period of the oscillations. For 
each value of the aspect ratio, a power-law relationship of the form l7 = l7(Ra,) Ram 
was then established. The m exponent was found to decrease with increasing aspect 
ratio. Mean-square fits give m = 0.67 for A = 25, ni = 1.0 for A = 20 and m = 1.75 
for A = 16. 
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Ra 17 17Ri1.75 

6850 11.838 2.2952 x 
6900 11.985 2.2943 x lo-' 
6950 12.141 2.2950 x 
7000 12.294 2.2949 x 
7100 12.60 2.2944 x 

TABLE 1. Evolution of the period 17 of oscillations for A = 16; 11' = 0.8 

For a given aspect ratio, the fact that the non-dimensional period bchaves like Ram 
indicates that the dimensional period evolves like H3m+iATm-i. The dimensional 
period of the oscillations is thus an increasing function of the temperature difference 
since m is larger than & for the three values of the aspect ratio. In a given 
experimental set-up, increasing the temperature difference slows down the upward 
drift of the cat's eyes. We have no definite explanation for this peculiar behaviour, 
which might be due to a stabilizing influence from the small vertical stratification 
that develops in finite aspect-ratio cavities. In order to make useful comparisons, it 
would be interesting to know the behaviour of the period of oscillations at  criticality 
for the slot of infinite vertical extension. This dependence is unfortunately not 
available a t  the present time. 

Table 2 shows the evolution of the critical Rayleigh number, wavelength A, and 
wave speed a, for the three values of the aspect ratio and for the slot of infinite 
extension taken from the linear stability results by Choi & Korpela. The critical wave 
speeds were obtained by extrapolation of the periods of the oscillations at the critical 
value according to the previously determined laws. This table shows that as the 
aspect ratio increases all the quantities tend, continuously and monotonically, 
towards the critical values corresponding to the case of an infinite-aspect-ratio 
cavity. 

3.3. Development of solutions resulting f r o m  the instability of the conduction regime 
Solutions were computed for increasing values of the Rayleigh number taking in 
general one instantaneous solution obtained for an immediately lower value of Ra as 
the initial condition. Steps of lo3 in Rayleigh number were generally taken, i.e. 
solutions were obtained for 9 x lo3, 1 x lo4, 1.1 x lo4. After some initial aperiodic 
transient consecutive to the sudden change in the value of the Rayleigh number, the 
solutions quickly resumed a time-periodic behaviour. Their time-space structure 
showed no qualitative difference with the solutions obtained for 7 x lo3 or 8 x lo3 
apart from an increase of the amplitude of the fluctuations. Figure 4 presents the 
amplitude of the temperature fluctuations a t  the monitoring point as a function of 
the Rayleigh number over the range 6.8 x 103-1.3 x lo4. On the same figure the 
dashed line represents the parabola corresponding to the Hopf bifurcation amplitude 
curve. Its shape was determined from the linear relationship shown in figure 3 and 
this curve is tangent to the actual amplification curve at  the critical Rayleigh 
number. Nonlinear effects become sizeable for Ra larger than 8 x lo4 and the curve 
shows that the solution presents fluctuations of almost constant amplitude 
(independent of the Rayleigh number) in the range 9 x 103-l.l x lo4. The amplitude 
of the temperature fluctuations has then increased to about 22 YO of the temperature 
difference across the cavity. This results in visible effects on the time-space structure 
of the solution as shown in figure 5 ,  which presents time sequences of the temperature 
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/ 

/ 
/ 

A 16 20 25 03 

Ra, 6850 6185 5965 5770 
A, 2.07 2.14 2.17 2.24 
a, 6.3 x 6.6 x 6.7 x 7.0 x 

TABLE 2 .  Evolution of the critical parameters, 7 = 0.8;  A = co taken from Choi & Korpela 

and stream-function fields for R a  equal to 1.1 x lo4. The isotherms in the middle of 
the cavity are seen to  evolve similarly to a travelling wave and the number of closed 
rolls varies periodically between 3 and 4. This is in good agreement with the results 
already obtained by Lee et al. (1982) for somewhat different values of the parameters. 

When the Rayleigh number is further increased to 1.2 x lo4, a qualitative change 
is observed in the evolution of the time-dependent solution which has undergone a 
period-doubling (frequency-halving) bifurcation. This is confirmed by the density 
power spectrum of the temperature signal at the sampling point (figure 6) which 
shows the presence of the + f subharmonic and of several linear combinations pf + q+ f .  
We have narrowed the range of values in which this subharmonic bifurcation takes 
place and found it  to occur between 1.18 x lo4 and 1.19 x lo4. The amplitude of this 
period-doubling bifurcation is very weak and has almost no macroscopic visible 
effect. 

3.4. Return to steady state - reverse transition 
Solutions showing period-doubling exist for values of the Rayleigh number in the 
range 1.19 x lo4-1.24 x lo4. When the Rayleigh number is further increased to 
1.26 x lo4 starting from an instantaneous solution obtained for 1.24 x lo4 as the 
initial condition, the solution first begins to show large-amplitude oscillations of 
period approximately equal to 30 time units. After two such oscillations, it then 
evolves very rapidly back to a steady state which is achieved after 150 time units. 



528 P .  Le Quid and J .  Piccheux 

FIGURE 5. Time sequences of the temperature (a) and stream-function ( b )  fields for Ra = 1.1 x lo4; 
A = 16, 7 = 0.8; N = 24, M = 72. Time interval is 7.0. Stream-function isovalues are 0.0005, 
0.001 5, 0.003, 0.005, 0.006, 0.007. 

- l O f . . . . , . . . . , . . , . , . . . . , . . . . ,  
0 0.1 0.2 0.3 0.4 0.5 

Frequency 

FIGURE 6. Density power spectrum of the temperature signal a t  point <= 0, z = 0.26; 
Hu = 1.2 x lo4; A = 16, 1;1 = 0.8; N = 24, M = 72; sampling of 2048 pointB over time interval of 
983.04. 
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FIGURE 7. Temperature (a), stream function ( b )  and pressure field ( e ) ,  Ra = 1 . 2 6 ~  lo4; A = 16, 
11 = 0.8; N = 24, M = 72. Stream-function isovalues are 0.0005, 0.0015, 0.003, 0.005, 0.006, 0.007. 

Note that the steady solution obtained for R a  equal to 1.26 x lo4 is still characteristic 
of the ‘cat’s eye’ regime as indicated by the presence of closed rolls and by the 
waviness of the isotherms in the middle part of the cavity (figure 7) .  This indicates 
that the reverse transition from unsteady to steady solutions is not directly linked 
to disappearance of the multicellular flow structure in the core. Another major 
difference between this steady solution and the unsteady solution displayed on figure 
5 for instance, is clearly a reduction of the number of rolls. This steady solution is 
indeed characterized by two main rolls even though a third extremum is visible on 
the stream-function pattern. 

When the Rayleigh number is decreased quasi-statically, a slight hysteresis is 
found in the region around 1.2 x 10‘. Steady-state solutions can be found for Ra 
values down to 1.15 x lo4. These solutions were integrated for very long times and 
showed no hint of instability. We believe that these solutions are stable steady-state 
solut,ions of the Boussinesq equations. When the value of the Rayleigh number is 
decreased to 1.12 x lo4 starting from the solution obtained for 1.15 x lo4 as the initial 
condition, the solution jumps back onto the unsteady time-periodic solution already 
found in the up-scan as shown in figure 8. 

Starting from the  steady solution corresponding to 1.26 x lo4 as initial condition, 
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FIGURE 8. Time evolution of the temperature at point = 0, z = 0.26; Ra = 1.12 x lo4; A = 16, 

7 = 0.8; N = 24, M = 72. 

the Ra-value was then sequentially increased to 2 x lo4 and 3 x lo4. The cor- 
responding asymptotic solutions were found steady. Their streamline and isotherm 
patterns show that these solutions are now truly characterized by a two-cell 
structure (figure 9). The Ra-value was then set to 3.2 x lo4 and, to our surprise, the 
asymptotic solution was then found to be time periodic with a dimensionless period 
of approximately 14. A time sequence of the stream function shows that the 
unsteadiness corresponds to an oscillation of the roll centres around their mean 
position. The rolls come closer and move away simultaneously in contrast with the 
cat's eye unsteadiness which corresponds to an upward drift of the cells. Unsteady 
solutions displaying similar characteristics were also found for increasing Ra values 
of 3.4 x lo4 and 3.5 x lo4. The Ra-value was then further increased to 3.6 x lo4 for 
which the corresponding asymptotic solution was found steady. As evidenced by its 
streamline and isotherm patterns shown in figure 10, this solution is now 
characterized by a monocellular flow structure of boundary-layer type with a vertical 
stratified core region. This monocellular solution was then used as initial condition 
to integrate the equations with decreasing Ra. Steady monocellular flow solutions 
were obtained for Ra values down to 1.8 x lo4. On this branch of solutions no 
unsteady solution was found. Integration with Ra set to 1.6 x lo4 starting from the 
solution found for Ra equal to 1.8 x lo4 as initial condition, leads to a steady two-cell 
flow which belongs to the two-cell solution branch already obtained for increasing 
Ra-values. 

These results show that, in the particular cavity investigated here, the solution of 
the two-dimensional axisymmetric Boussinesq equations undergoes a reverse 
transition from unsteady multi-cellular to steady monocellular flow structure as the 
Rayleigh number increases. The conjecture of Roux et al. (1980) for cavities in 
Cartesian coordinates seem thus to apply to annular cavities as well, with the major 
difference that, in Cartesian cavities, this reverse transition is supposed to  take place 
from steady multiceilular to steady monocellular flow. Reverse transitions in the 
Cartesian case have already been observed in the numerical computations of Roux 
et al. (1980) and of Lauriat & Desrayaud (19853) for instance. In the annular cavity 
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FIGURE 9. Temperature (a). stream function (b) and pressure field (c), Ra = 2 x lo4; A = 16, 
7 = 0.8; N = 24, M = 72. Stream-function isovalues are 0.0005, 0.0015, 0.003, 0.005, 0.006, 0.007, 
0.008. 

investigated here, this reverse transition seems, however, much more complex than 
anticipated. To summarize, the return from unsteady multicellular flows to steady 
monocellular flows seems to occur through several distinct steps. There is first a 
transition from unsteady three-cell flow to a steady two-cell flow around Ra equal 
1.2 x lo4. This two-cell solution becomes unsteady for Ra-values approximately 
equal to 3.2 x lo4. A further increase of the Ra-value to 3.6 x lo4 eventually yields the 
steady monocellular flow. These changes in the number of cells are characterized by 
hysterisis. These different transitions are summarized in the diagram shown in figure 
11 where the solution branches are classified by their number of cells. The choice may 
seem somewhat arbitrary in view of the uncertainty in the number of rolls for some 
of the solutions but it helps classify the different solutions. 

These results are somewhat surprising in view of what is known from the Cartesian 
case, even though no one has really investigated numerically in any detail this 
reverse transition process which might also prove more complex than expected. Note 
for instance, that Lauriat & Desrayaud (19853) mention that, for values of the 
Rayleigh number in the vicinity of the reverse transition, their scheme would not 
converge when using solutions corresponding to lower Ra-values as initial condition 
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FIQURE 10. Temperature (a ) ,  stream function ( b )  and pressure field (c), Ra = 3.6 x lo4; A = 16, 7 
= 0.8; N = 24, M = 90. Stream function isovalues are 0.0005, 0.002, 0.004, 0.006, 0.0075, 0.009. 

whereas it would converge when starting from solutions corresponding to higher 
values of Ra. 

This led us to investigate the reverse transition in a Cartesian cavity of aspect 
ratio 16. Detailed results will be presented elsewhere. Let us just briefly mention 
here that these new results qualitatively agree with the findings in the annular 
cavity. The number or rolls decreases step by step from four a t  criticality to one for 
an Ra value of 4 x lo4. Each roll-number change is characterized by hysteresis. Also 
unsteady two-cell solutions were found in a range of Ra-values in the vicinity of 
3.5 x lo4, in complete agreement with the corresponding unsteady solutions found on 
the two-cell branch in the annular cavity. Hysteresis and multiple solutions thus 
clearly appear as a characteristic feature of these reverse transitions in the Cartesian 
or cylindrical cases. This agrees with recent experiments performed by Desrayaud 
(1987) who observed slight hysteresis effects in Cartesian cavities of aspect ratio 13 
and 14. 

An important conclusion of these numerical experiments in the annular cavity is 
that the reverse transition is characterized by hysteresis and that for a given 
Rayleigh number, multiple solutions which have little in common may be found. For 
instance, in the vicinity of 1.2 x lo4, at least two solutions exist : one is steady. The 
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other one is time periodic showing period doubling and presents temperature 
fluctuations of maximum amplitude on the order of 25% of the temperature 
difference across the cavity. In these circumstances it is not surprising that the 
experimental observations seem so contradictory. It would be interesting to study 
the stability of these two-dimensional steady or unsteady solutions with respect to 
three-dimensional azimuthal disturbances. This could perhaps help reconcile 
numerical predictions with experimental observations. 

To conclude this section let us mention that reversing the heating, i.e. considering 
an annulus with cold inner wall and hot outer wall, leads to a downward drift of the 
eat’s eyes. 

4. The boundary-layer regime 
4.1. Steady solzltions 

As already mentioned in the previous paragraph, a unique steady-state solution was 
found for values of the Rayleigh number larger than 3.6 x lo4. Their streamline and 
isotherm patterns show that these solutions pertain to the boundary-layer regime. 
The boundary-layer character of the flow becomes more and more pronounced as the 
Rayleigh number increases, as can be seen by comparing the solution corresponding 
to an Ba-value of 2 x lo5 (figure 12) with that corresponding to 3.6 x lo4 already 
shown on figure 10. The vertical boundary layers adjacent to the hot and cold wall 
become thinner and a large vertical stable stratification develops in the core region 
of the cavity. Another characteristic feature is the inversion of the horizontal 
temperature gradient in the core region of the cavity which indicates that all the heat 
is transferred by convection across the cavity. More unexpected are the two dead 
zones which develop at the top and bottom ends of the cavity. The top one appears 
first, at a Rayleigh number close to 1 x lo5 and both are formed when the Rayleigh 
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FIGURE 12. Temperature (a), stream function ( b )  and pressure field (c), Ra = 2 x lo5; A = 16, 
= 0.8; AT = 32, M = 161. Stream-function isovalues are 0.0005, 0.002, 0.004, 0.006. 0.007. 

number reaches 2 x lo5 (figure 12b). Most of the flow rate bypasses these zones and 
circulates in a fictitious cavity of smaller aspect ratio than the actual aspect ratio of 
the cavity. This phenomenon is related to a local thickening of the thermal boundary 
layer around x/A = 0.8 as shown by the isotherms (figure 12a) and is also associated 
to a strong transverse pressure gradient (figure 1 2 c ) .  The same effect is present, but 
weaker, along the outer wall. These features were also found by Lauriat & Desrayaud 
(1985b) in large-aspect-ratio Cartesian cavities. In order to get these solutions we had 
to dramatically increase the spatial resolution, in particular in the vertical direction : 
it was found necessary to increase M to 160 and N to 32 to adequately resolve the 
solution for a value of Ra equal to 2 x lo5. It is believed that it is the presence of the 
region of high vertical shear linked to the detached boundary layer that causes these 
numerical resolution difficulties. Indeed, this larger vertical gradient is located in the 
interior of the cavity where the number of Chebyshev polynomials needed to resolve 
spatial scales or order B varies like e-l, as opposed to e-a when the regions of strong 
variations are located at  the walls. Numerical integration performed with coarser 
resolutions would predict spurious, very high-frequency oscillating solutions, as is 
generally the case for spectral methods with insufficient spatial resolutions (see e.g. 
Orszag & Kells 1980; Marcus 1981 ; Curry et al. 1984). 
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FIGURE 13. Time evolution of the c-velocity component at point 5 = 0.71, z = -0.26; (a )  Ra = 
2 . 1 x 1 0 5 ; ( b ) R a = 2 . 2 x 1 0 5 ; ( c ) R a = 2 . 3 x  105;A = 1 6 , ~ = 0 . 8 ; N = 3 2 , M =  160.Timeintegration 
carried out with At = 0.003. 

Figure 13 presents the time evolution of the u-velocity component a t  the sampling 
point for three Rayleigh number values, respectively equal to 2.1,  2.2 and 2.3 x lo5. 
Note that the location of the sampling point has been moved to the bottom of the 
downward boundary layer where the phenomena are more clearly visible as will be 
shown later. These time traces show that the three solutions eventually return to a 
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FIGURE 14. (a) Time evolution of the temperature at points 5 = 0.71, z = -0.26; Ra = 2.5 x 10'; 
A = 1 6 , ~  = 0.8 ; N = 32, M = 180. ( b )  Density power spectrum of this signal : sampling of 1024 points 
over time interval of 40.96. 

steady state but the time needed to achieve steady state increases with increasing 
Rayleigh numbers. These evolutions are qualitatively similar : a high-frequency 
oscillation is modulated by a low-frequency phenomenon. The high-frequency 
oscillations correspond to travelling waves in the boundary layers. These waves are 
excited during the transients and slowly die out as integration time tends toward 
infinity. The origin of the low-frequency modulation is still not clear a t  present: it 
may correspond to a perturbation that is generated when the Rayleigh number is 
suddenly increased and that is advected by the primary circulation around the 
cavity, or to some oscillations of internal gravity waves sustained by the stratified 
core region of the cavity. Patterson (1984) has indeed shown that these internal 
gravity waves determine the asymptotic behaviour to steady state in cavities of 
aspect ratio of order 1 .  These evolutions are very similar to those obtained in a 
Cartesian cavity of aspect ratio equal to  8 by Le Qudrd & Alziary de Roquefort 
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FIGURE 15. Time sequence of temperature field ( a )  and of stream-function field (b ) ,  Ra = 2.5 x lo5; 
N = 32, M = 180. Time interval is 0.58. Stream-function isovalues are 0, 0.0005, 0.0015, 0.003, 
0.005, 0.0065. 0.007. 

(19853) and likewise suggest that the boundary-layer flow is close to becoming 
unsteady. 

4.2. Unsteady boundary-layer regime 

4.2.1. Structure of the unsteady solution 

When the value of the Rayleigh number is increased to 2.5 x lo5, the numerical 
algorithm gives an asymptotic solution that is unsteady, time periodic and presents 
fluctuations of constant amplitude (figure 14a). The asymptotic solution is achieved 
after a transient evolution composed of a high-frequency signal modulated by a low- 
frequency phenomenon. The low-frequency modulation slowly dies out as the 
integration time tends to infinity which gives a single frequency dependence of the 
solution as confirmed by the density power spectrum of this signal (figure 143). It 
should be noted that the maximum amplitude of the temperature fluctuations is on 
the order of f 2 % of the temperature difference across the gap. This indicates that 
this boundary-layer instability has a weak perturbation growth rate in the vicinity 
of the critical Rayleigh number. In  order to obtain this solution we have to slightly 
increase the resolution in the vertical direction which is now M = 180 (N was kept 
equal to 32). The time step was taken as 2.5 x Figure 15 presents time sequences 
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FIGURE 16. Time sequence of fluctuating temperature field (a) and of fluctuating stream-function 
field ( b ) ,  Ra = 2.5 x lo5; N = 32, M = 180. Isovalues of fluctuating temperature are k0.02, f0.008, 
Ifr 0.002 ; isovalues of fluctuating stream function are f0.00015, kO.00008, +0.00002 ; negative 
isovalues are shown as dotted lines. One structure is shaded in grey so that its motion can be 
followed. 

of the temperature and stream-function fields over one period of oscillation. Even 
though the amplitude of the fluctuations is small, waviness of the isotherms is visible 
just before the boundary layer separates both along the cold and hot walls. The 
stream-function plots (figure 15b) show a small recirculation zone that appears 
periodically a t  the location where the upward boundary layer detaches from the hot 
wall. Figurc 16 presents the corresponding time sequences of the fluctuating 
temperature and stream-function fields obtained in the manner already described in 
$3.2. The temperature fluctuations are seen to be confined within the boundary 
layers. In  the middle part of the cavity these fluctuations are of very small 
amplitude, in sharp contrast with the structures characteristic of a cat.’s eye 
instability. I n  each boundary layer, the temperature fluctuations reach their 
maximum amplitude in the downstream region just before the flow turns around. 
Rather surprisingly, the temperature fluctuations are seen to  be much larger in the 
descending boundary layer along the cold outer wall than in the ascending boundary 
layer along the hot inner wall. They are carried along by the primary circulation and 
they thus circulate in the fictitious cavity of smaller aspect ratio a t  a wave speed 
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FIGURE 17. Evolution of the squared amplitudes of temperature a2(@), of the w-velocity component 
az((w) and of a2(E) as a function of Ra; A = 16, 7 = 0.8; location of monitoring point: 6 = 0.71, 
z = -0.26. 

close to the maximum value of the vertical velocity in the boundary layer. In 
addition small structures separate in the region of high shear and accumulate in the 
dead end zones where they pile up at the top and bottom walls and are gradually 
smeared out. The stream-function fluctuations are seen to extend across the gap and 
reach their maximum amplitude in the same region as the temperature fluctuations. 

4.2.2 Accurate determination of the critical Ra, 
It is possible to obtain an accurate estimate of the critical value if one again 

assumes that the loss of stability is due to a supercritical Hopf bifurcation. Several 
asymptotic solutions were thus computed in the vicinity of the critical Rayleigh 
number, i.e. for values of Ra equal to 2.4, 2.45, 2.5, 2.55 and 2.6 x lo5. Figure 17 
presents the evolution of the squared amplitudes of the fluctuations of the 
temperature and w-velocity component a t  the sampling point and of E( 0 )  previously 
defined. These quantities increase linearly with Ra over this range and extrapolation 
of these linear relationships to zero amplitude provides an accurate estimate of the 
critical Rayleigh number equal to 2.35 x lo5. 

Table 3 presents the period Ii' of the corresponding solutions In the second column 
we show the number N of time steps per period. It can be seen that the period II 
varies by less than 0.2 % when the Rayleigh number increases by almost 8 %. I7 can 
thus be considered as independent of Ra over this range. This result shows that the 
dimensional period of the oscillations varies like (H/AT)o*6.  This result is consistent 
with the dependence found in the Cartesian case for the same type of boundary-layer 
instability (Le Qu6re' & Alziary de Roquefort 1986). For this type of instability, 
increasing the temperature difference decreases the dimensional period of the 

ia FLM 206 
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Ra N 17 
2.40 x lo5 475.2 1.1880 
2.45 x 1 0 5  475.3 1.1882 
2.50 x 105 475.9 1.1897 
2.55 x 105 475.8 1.1895 
2.60 x lo5 475.6 1.1890 

TABLE 3. Evolution of the period l7 of oscillations; A = 16, g = 0.80 

travelling waves. (This result strongly suggests that the surprising dependences 
found a t  $3.2.3 concerning the cat's eye instability are not spurious numerical effects 
since these solutions a t  low Rayleigh numbers were much easier to compute than 
those for the high Rayleigh numbers.) Note that a value of Ra equal to 2.5 x lo5 
based on cavity width corresponds to a Rayleigh number based on cavity height of 
1.024 x loB. This value can be achieved with a temperature difference of 10 OK in a 
cavity which is roughly 1 m tall and 0.06 m wide. The corresponding period of the 
travelling waves is then about 1.5 s. 

5. Local and global Nusselt numbers 
The local instantaneous Nusselt numbers is defined as the normal derivative of an 

instantaneous temperature field at the vertical walls r = rl and r = r2 respectively: 

ao 
ar Nul@, t )  = - ( r  = rl, z,  t ) ,  

ao 
NU,(%, t )  = - (r = T z ,  2 ,  t ) .  

ar 

For steady solutions these definitions reduce to the classical ones. The mean space 
values at the walls are then defined as 

- ( r  = rl, z, t )  dz, 

Nu,(t) = - '[ z ( r  = r2,z,t)dz. 
2 -l ar 

I.&e that both the local and mean space value can be c,tained with spectral 
accuracy. The mean time-space value is obtained from an arithmetic mean of the 
mean space value over a time period of the oscillation. We also define two local curves 
which are respectively the upper and lower envelopes in time of the local 
instantaneous Nusselt number 

Nu,,,(z) = max Nu(z,t) ,  

Nu,,,(%) = min Nu(z,t) ,  

where to is some arbitrary reference time once the asymptotic solution is reached. 
Nu,,,(z) -Nu,,,(z) measures the amplitude of the fluctuations of the local Nusselt 
number at a given elevation z. 

to c t 6 t,+n 

tq < t 6 t,+n 
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Nusselt number 

FIGURE 18. Local Nusselt numbers along the inner (left) and outer (right) walls, Ra 
= 16, g = 0.8. The solid lines are Nu,,,(z) and Numl,(z). The dotted line is a typical 
Nu@, t)-distribution. 

= 1 . 0 ~ 1 0 4 ; ~  
instantaneous 

5.1. Conduction regime 
In  the steady conduction regime, the isotherms are parallel to the vertical walls. 
Heat transfer is mainly due to conduction and the local Nusselt numbers remain 
almost constant over the central part of the cavity. The appearance of the unsteady 
conduction regime results in unsteady local and mean-space Nusselt numbers. Figure 
18 presents local Nusselt-number distributions along the inner and outer walls for a 
value of Ra equal to 1 x lo4. The solid lines correspond to Nu, and Nu,, ; a typical 
instantaneous local Nusselt number distribution is shown by the dotted line. Its 
waviness reflects the presence of the cat’s eyes in the flow and it evolves in time like 
a travelling wave propagating upwards. This particular solution is characterized 
by a maximum amplitude in the temperature fluctuations approximately equal to 
22 %. As a consequence, the local Nusselt number shows rather large-amplitude 
fluctuations since the relative difference (Nu, -Numi,)/O.5(Nu, +Nu,,,,) reaches 
a maximum on the order of 30%. This maximum amplitude is found just above 
midheight of the cavity in agreement with the structure of the unsteady solution. 

18-2 
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FIGURE 19. Local Nusselt numbers along the inner (left) and outer (right) walls, Ra = 2.5 x lo5; 
A = 1 6 , ~  = 0.8. The solid lines areNu,,,(z) andNu,,,(z). The dotted line is a typical instantaneous 
Nu(z, t)-distribution. 

5.2. Boundary-layer regime 

5.2.1. Xteady boundary-layer regime 
When the solutions enter the boundary-layer regime the local Nusselt-number 

distributions take the usual characteristic shape found in Cartesian cavities. Its 
value is maximum in the starting corner of the boundary layer and decreases sharply 
downstream of this point. The formation of the dead end zones qualitatively alters 
the shape of these distributions. Local thickening of the thermal boundary layer at 
the location where the flow turns around causes a sharp local decrease in Nusselt 
number. This results in large local gradients of these local Nusselt-number 
distributions. 

5.2.2. Unsteady boundary-layer regime 

Figure 19 presents various local Nusselt-number distributions for the unsteady 
solution corresponding to an Ra-value of 2.5 x lo6 discussed in $4.2.1. On the figure 
are plotted Nu,,,, Numi, and a typical instantaneous Nusselt-number distribution 
with the same notation as that used in figure 18. Their overall shapes are 
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characteristic of the boundary-layer regime and display the region of strong 
variation described in the previous subsection. The waviness of the instantaneous 
Nusselt-number distribution reflects the travelling wave structure of the boundary 
layer. The amplitude of fluctuations of the local Nusselt number is thus larger along 
the outer wall than along the inner wall, as was found for the fluctuating temperature 
field. This maximum amplitude is reached in the downstream part of the downward 
boundary layer. 

5.3. Global Nusselt number 
The amplitude of the fluctuations of Nu, and for both types of unsteady motion 
remain small even though the local fluctuations may be quite large. This is due to a 
combination of two factors : the local Nusselt-number distributions take the form of 
travelling waves and the local fluctuations reach their maximum amplitude in 
regions corresponding to small absolute values of the local Nusselt number. 

The cylindrical nature of the configuration and the adiabatic boundary conditions 
imposed on the top and bottom walls imply that, a t  least for steady solutions, 
r , K  = ray. All global Nusselt numbers obtained for values of the Rayleigh 
numbers in the range 4 x 103-2.5 x lo5 may be correlated with a good accuracy by 
rNu = 1 . 0 3 5 R ~ ~ . ~ ’ ~ .  Note that these values are based on H as reference length and 
should be divided by $4 (i.e. 8) in order to be compared to more conventional values 
based on ( r2-r l )  as reference length. 

6. Conclusion 
Axisymmetric natural convection of air in a tall vertical differentially heated 

annulus has been investigated numerically with a Chebyshev spectral method. In 
particular, the different flow transitions were carefully studied in a cavity of aspect 
ratio 16 and radius ratio 17 = 0.8. In  the range of values investigated, several distinct 
transitions were found when increasing Ra. Two of them correspond to a steady- 
unsteady transition while a third one is a reverse (unsteady-steady) 
transition. The first instability leading to unsteady motion takes place a t  low values 
of the Rayleigh number (6850 for A = 16, 7 = 0.8) when the flow pertains to the 
conduction regime. This instability takes the form of unsteady cross-rolls (cat’s eyes) 
drifting slowly upwards when the inner cylinder is heated and downwards when 
the outer cylinder is heated. The second one occurs at  much higher values of the 
Rayleigh number (2.35 x los for A = 16, 7 = 0.8) when the flow is in the boundary- 
layer regime. This instability takes the form of travelling waves confined within the 
boundary layers. These two instabilities possess the characteristic features of a 
supercritical Hopf bifurcation. This has been used to accurately determine the values 
of the Rayleigh number a t  which both bifurcations take place. The dimensional 
oscillation period of travelling wave instability behaves like ( H / A T ) 0 . 5 ,  in agreement 
with previous results obtained in EL Cartesian geometry. The dimensional oscillation 
periods for the ‘eat’s eye’ instability were found to increase with AT in the vicinity 
of the critical Rayleigh numbers for the three aspect ratio values investigated. Thus, 
between these two steady-unsteady bifurcations there exists a reverse transition 
from the unsteady multicellular flow corresponding to the eat’s eyes instability to a 
steady monocellular flow corresponding to the boundary-layer regime. This reverse 
transition occurs in different steps. There is first an unsteady-steady transition 
which is accompanied by a reduction in the number of cross-rolls from three to  two 
at values of Ra around 1.2 x lo4. The transition to a monocellular structure occurs 
later, at an Ra-value of 3.6 x lo4 approximately. Both transitions exhibit hysterisis 
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showing that, a t  a given Rayleigh number, multiple steady or unsteady solutions can 
be found. Three-cell solutions showing period doubling as well as two-cell unsteady 
solutions were also found. Investigation of the stability of these axisymmetric 
solutions with respect to three-dimensional azimuthal disturbances will be the 
subject of future research. 

Computational facilities were provided thanks to the Scientific Committee of the 
C.C.V.R. which is gratefully acknowledged. 
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